1. Let ζ denote the Riemann zeta function, and suppose that $\zeta(z)=0$ for some $z \in \mathbb{C}$. Prove that $\operatorname{Re}(z)=1 / 2$.
2. Prove that every simply connected, closed 3 -manifold is homeomorphic to the 3 -sphere.
3. Let X be a nonsingular complex projective manifold. Then every Hodge class $\alpha \in \operatorname{Hdg}^{k}(X)=H^{2 k}(X ; \mathbb{Q}) \cap H^{k, k}(X)$ is a rational linear combination of algebraic cocycles.
4. Prove that for any compact simple gauge group G, a non-trivial quantum YangMills theory exists on \mathbb{R}^{4} and has mass gap $\Delta>0$.

5 . Let \mathcal{E} be an elliptic curve over a number field K, and let $L(E, s)$ be the associated L-function. Prove that the rank of $E(K)$ is the order of the zero of $L(E, s)$ at $s=1$.

APRIL FOOL'S!

1. Consider the sequence defined by:

$$
\left\{\begin{array}{l}
u_{0}=\frac{1}{2} \\
u_{n+1}=\frac{u_{n}+1}{u_{n}+2} \quad \text { for } n \geq 0
\end{array}\right.
$$

Prove that $0<u_{n}<\frac{2}{3}$ for every integer $n \geq 0$.
2. Let n be a positive integer, and let \mathbb{Z}_{n} be the set of integers modulo n. Let

$$
S=\left\{[x] \in \mathbb{Z}_{n}:\left[x^{2}\right]=[x]\right\}
$$

(a) Write out the elements of S when $n=15$. You may write this as a list $\{[a],[b],[c], \ldots\}$.
(b) Prove that if n is prime, then $S=\{[0],[1]\}$.
3. Let F_{n} be the Fibonacci sequence:

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { if } n>2 .
$$

Prove that $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$.
4. Suppose that $f: A \rightarrow B$ is a function and $C \subseteq B$. Prove that $f\left(f^{-1}(C)\right)=$ $C \cap f(A)$.
5. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by

$$
\forall n \in \mathbb{N}, \quad f(2 n-1)=3 n-2 \quad f(2 n)=3 n-1
$$

Prove that $\mathbb{N} \times \mathbb{N}$ is denumerable by showing that the function $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined as $g(m, n)=3^{m-1} f(n)$ is bijective.

